62[2.10].-T. N. L. Patterson, "Gaussian Formula for the Calculation of Repeated Integrals," tables appearing in the microfiche section of this issue.
Abscissas and weights of the r-point Gaussian quadrature formula for the integral

$$
(n-1)!\int_{-1}^{1} d x_{1} \int_{0}^{x_{1}} d x_{2} \int_{0}^{x_{2}} d x_{3} \ldots \int_{0}^{x_{n-1}} f\left(x_{n}\right) d x_{n} \equiv \int_{-1}^{1} w(x) f(x) d x
$$

are tabulated to 20 significant figures for $n=2,4 ; r=2(2) 16$ and $n=3,5$; $r=2(1) 16$. The resulting formula is exact if $f(x)$ is a polynomial of degree $2 r-1$ (or $2 r$ when r is even). The weighting function is

$$
w(x)=(-1)^{n} w(-x)=(1-x)^{n-1}, \quad 0<x \leqq 1
$$

This has discontinuous even (odd) derivatives at $x=0$.
A normal approach to such an integration might be to divide the interval into two sections and use either the Gauss-Legendre formula or better still the appropriate Gauss-Jacobi formula in each section separately. However, the existence of these tables does allow the interval $[-1,1]$ to be treated as a whole.
J. N. L.

63[2.20, 7].—Henry E. Fettis \& James C. Caslin, More Zeros of Bessel Function Cross Products, Report ARL 68-0209, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, December 1968, v +56 pp., 28 cm . [Released to the Clearinghouse, U. S. Department of Commerce, Springfield, Virginia 22151.]
In this compact report the authors continue their previous 10D tabulation [1] of the roots of the equations (a) $J_{0}(\alpha) Y_{0}(k \alpha)=Y_{0}(\alpha) J_{0}(k \alpha)$, (b) $J_{1}(\alpha) Y_{1}(k \alpha)=$ $Y_{1}(\alpha) J_{1}(k \alpha)$, and (c) $J_{0}(\alpha) Y_{1}(k \alpha)=Y_{0}(\alpha) J_{1}(k \alpha)$.

These new tables give the roots α_{n} and the corresponding normalized roots γ_{n} of all three equations, for $n=5(1) 10$ and $k=0.001(0.001) 0.3$. For equation (c) these roots are also tabulated corresponding to $k^{-1}=0.001(0.001) 0.3$.

The normalized roots are related to the others by the equation $\gamma_{n}=$ $(1-k) \alpha_{n} /(n \pi)$ for (a) and (b), and by $\gamma_{n}=|k-1| \alpha_{n} /\left[\left(n-\frac{1}{2}\right) \pi\right]$ for (c). The authors note the properties $\lim _{k \rightarrow 1} \gamma_{n}=1$ (all n) and $\lim _{n \rightarrow \infty} \gamma_{n}=1$ (all k).

For examples of applications of these tables, as well as details of their calculation, the user should consult the earlier report [1].
J. W. W.

1. Henry E. Fettis \& James C. Caslin, An Extended Table of Zeros of Cross Products of Bessel Functions, Report ARL 66-0023, Aerospace Research Laboratories, Office of Aerospace Research, United States Air Force, Wright-Patterson Air Force Base, Ohio, February 1966. (See Math. Comp., v. 21, 1967, pp. 507-508, RMT 64.)

64[2.40, 7, 10].-John Riordan, Combinatorial Identities, John Wiley \& Sons, Inc., New York, 1968, xii +256 pp., 23 cm . Price $\$ 15.00$.

This volume deals in the main with identities involving the binomial coefficients. As is well known, binomial coefficients are the simplest combinatorial entities and arise quite naturally in a wide variety of combinatorial problems.

